
Composite Neighborhood Search
with a Case Study on Incremental Graph Drawing

Zhouxing Su1 , Zhipeng Lü1∗ , Chumin Li2 , Qi Jin1 and Bo Peng3

1SMART, Huazhong University of Science and Technology, China
2MIS, Université de Picardie Jules Verne, France

3Southwestern University of Finance and Economics, China
zhipeng.lv@hust.edu.cn

Abstract

Traditional local search algorithms usually evalu-
ate the whole neighborhood but only perform one
single move at each step. However, there are of-
ten many neighborhood moves in the current neigh-
borhood that are independent of each other and
can be simultaneously performed without interfer-
ence. In this paper, we present a composite neigh-
borhood search (CNS) framework for local search
algorithms allowing to perform the best combina-
tion of independent moves at each step, by solving
the incremental graph drawing problem (IGDP) as
a case study. We show that finding the best com-
bination of independent moves can be formulated
as the maximum weight clique problem in the gen-
eral case, and for the IGDP, the best combination
of independent moves can be more easily identi-
fied using problem-specific knowledge. We test the
CNS framework on 240 public IGDP instances, and
show its clear advantage in terms of both efficiency
and effectiveness. We also carry out an analysis of
why and how the CNS framework performs better
than traditional single-move-based local search.

1 Introduction
Neighborhood search or local search is known to be a highly
effective metaheuristic framework for solving a large num-
ber of combinatorial optimization problems. Starting from an
initial solution, local search iteratively improves the incum-
bent solution by exploring its neighborhoods. In this way, the
quality of the current solution is progressively improved by
one of its neighbors until a specific stop criterion is met.

One of the most important features in a local search algo-
rithm is the definition of its neighborhood. In general, the be-
havior of local search depends strongly on the characteristics
of its neighborhood. Many algorithms employ simple neigh-
borhood moves, such as one flip (move) or two swap, which
searches a small neighborhood structure in a fast manner but
can only enable small improvements at each step, while other
algorithms employ large and complex neighborhood moves,

∗Contact Author

such as ejection chain [Yagiura et al., 2004] or large neigh-
borhood search [Pisinger and Ropke, 2010], which allows the
search to obtain solution improvements in a quick and impor-
tant manner, but the size of the neighborhood structure is huge
and the evaluation of the neighborhood is quite expensive.

All the above-mentioned local search algorithms evaluate
the whole neighborhood, but only perform one move at each
step of the neighborhood search. One could ask the follow-
ing questions: Why not to simultaneously perform multiple
neighborhood moves at each step to improve the current so-
lution as far as possible after evaluating the current neigh-
borhood? How is this kind of combination of neighborhood
moves defined and how can the best combination of moves
be identified in an effective and efficient manner? How can
this approach affect the performance of the traditional local
search algorithm?

In this paper, we try to answer these questions by propos-
ing and studying a composite neighborhood search (CNS)
framework for local search algorithms. Concretely, we intro-
duce the notion of independent moves in a neighborhood, and
show that finding the best combination of independent moves
can be formulated and solved as the maximum weight clique
problem (MWCP) in the general case. Using this framework,
a local search algorithm can simultaneously perform the com-
bination of independent moves bringing the greatest improve-
ment at each step of the local search, which is better than
performing only one single move. As a case study, we con-
sider the so-called multi-layered incremental graph drawing
problem, one of the hot topics of data visualization nowa-
days [Beck et al., 2017]. We show that the optimal com-
bination of independent neighborhood moves can be more
efficiently identified using dynamic programming, because
problem-specific knowledge can be used. The computational
results demonstrate that the proposed algorithm is quite com-
petitive compared with the state-of-the-art algorithms in the
literature. Furthermore, we carry out an analysis to give in-
sight on why and how composite neighborhood search can
be used in local search algorithms for solving combinatorial
optimization problems.

2 Motivations and Contributions
As is known, the most time-consuming part of a local search
algorithm is the evaluation of the neighborhood. However,
when thousands or even millions of (simple or complex)

neighborhood moves are evaluated, usually only one move
is selected and performed. This leads to the low efficiency of
the local search algorithm when we consider the number of
performed moves with respect to the evaluated ones. How-
ever, there are often many neighborhood moves that are inde-
pendent of each other and can be performed simultaneously
without interference to increase the search efficiency.

More importantly, simultaneously performing a set of
neighborhood moves starting from the current solution could
allow a more diversified search than successively perform-
ing the best move, because independent moves are generally
widely distributed in the neighborhood, while successively
performing the best move could more easily lead the search
to a greedy local suboptimal solution.

All these aspects motivate us to study the composite neigh-
borhood search framework. The contributions of this paper
can be summarized as follows:

1) We present the CNS framework for all combinatorial op-
timization problems, including the definition of indepen-
dent moves in a neighborhood and the formulation of the
problem of finding the best combination of independent
moves as MWCP in the general case.

2) Using the incremental graph drawing problem (IGDP)
as a case study, we show how moves can be independent
and propose a dynamic programming method to identify
the optimal combination of independent moves, allow-
ing us to implement CNS algorithms for the IGDP.

3) Tested on 240 public IGDP instances, our CNS algo-
rithms obtain highly competitive results comparing to
the state-of-the-art algorithms in the literature.

4) We show that even using an exact algorithm of the
MWCP to find the best combination of independent
moves in each step without using problem-specific
knowledge, our CNS algorithm remains competitive,
suggesting the potential of the CNS framework for other
combinatorial optimization problems.

3 Composite Neighborhood Search
We propose a composite neighborhood search framework as
shown in Algorithm 1. The CNS framework is similar to the
classic iterated local search framework. Starting from an ini-
tial solution (line 1), it evaluates all neighborhood moves M
for the current solution s iteratively (line 5), and escapes the
local optima using a perturbation operator (line 9). However,
instead of making the best neighborhood move, it identifies
and performs a set of independent moves M∗ to maximize
the total improvement to the objective value (lines 5-7).

In order to fully exploit the potential of the evaluated
moves, the CNS framework constructs a composite neighbor-
hood move to simultaneously perform multiple independent
moves. Given a feasible solutionX , let f(X) be the objective
value of X , let binary operator ⊕ represent the operation of
making a move, let ∆(m) = f(X⊕m)−f(X) be the objec-
tive improvement of a neighborhood move m, we define the
independence of a set of neighborhood moves as follows.
Definition 1. Neighborhood moves m1, m2, ..., mk to be
performed on the incumbent solution X are independent if

Algorithm 1 Composite Neighborhood Search Framework

Input: Instance I
Output: Best solution s∗ found

1: s← GenerateInitialSolution() // s is the current solution
2: while Termination condition is not met do
3: repeat
4: s∗ ← s
5: M ← EvaluateNeighborhoodMoves(s)
6: M∗ ← AssembleIndependentMoves(s, M)
7: s←MakeMoves(s, M∗)
8: until s is worse than s∗
9: S ← Perturb(s, s∗)

10: end while

f(X ⊕m1 ⊕m2 ⊕ · · · ⊕mk) = f(X) +
∑k
i=1 ∆(mi).

Definition 1 suggests that the objective improvement of a
set of independent moves can be calculated by simply sum-
ming up their objective improvements with respect to the cur-
rent solution. So, instead of making the moves one by one
and carefully considering the consequences of each move and
the intermediate solutions, one can easily choose a set of in-
dependent moves to make simultaneously based on their in-
dividual objective improvements. In practice, pairwise inde-
pendence is much easier to identify, so we use the following
assumption to simplify the implementation of CNS.
Hypothesis 1. Pairwise independence f(X ⊕mi ⊕mj) =
f(X)+∆(mi)+∆(mj),∀i 6= j, 1 ≤ i, j ≤ k derives f(X⊕
m1 ⊕m2 ⊕ · · · ⊕mk) = f(X) +

∑k
i=1 ∆(mi).

Hypothesis 1 is reasonable because independent moves
usually operate on different parts of X . For example, inde-
pendent neighborhood moves can be easily identified in k-
coloring problem and k-set covering problem as follows:
• k-Coloring. A classic neighborhood move m(v, c′, c)

for the k-coloring problem can be defined as changing
color c′ of a vertex v to c where c 6= c′. Two moves
m(v1, c

′
1, c1) andm(v2, c

′
2, c2) are independent if vertex

v1 is not adjacent to vertex v2.
• k-Set covering. The unicost k-set covering problem

seeks for the full coverage to all elements with exact k
sets. The basic neighborhood move m(s) is to flip the
selection state of a set s. As long as the flipped sets s
and s′ do not intersect, the corresponding moves m(s)
and m(s′) are independent to each other.

Hypothesis 1 is apparently true for these two problems.
Based on this hypothesis, one may observe that finding

the best combination of independent moves in the neighbor-
hood of the current solution can be regarded as a maximum
weight clique problem (MWCP). Let the moves be nodes in
a graph and let ∆(m) be the weight of the node correspond-
ing to move m. For each pair of independent neighborhood
moves, an edge is added between them. Then, the maximum
weight clique in the transformed graph gives the optimal com-
bination of independent moves. Generally, one can utilize
the state-of-the-art algorithms to solve it exactly [Jiang et al.,
2017; Fang et al., 2016] or heuristically [Wang et al., 2016;
Wu et al., 2012]. In some special cases where the structure

of the resulting graph meet certain criteria, some polynomial
algorithms like Balas and Yu; Brandstädt and Mosca [1989;
2018] can be employed to find the optimal combination ef-
ficiently. Moreover, dedicated algorithms utilizing problem-
specific knowledge can be developed to achieve even better
performance, as presented in the following case study.

4 Incremental Graph Drawing Problem
Graph is a powerful model which has brought significant pro-
ductivity gain in project management [Burch et al., 2012],
production planning [Eppler and Platts, 2009], network de-
sign [Kriegel et al., 2008], decision making [Mateescu et al.,
2008] and data visualization [Hu et al., 2016]. In order to
make the graphs more user-friendly, the graph drawing al-
gorithms usually need to place the vertices in a structured
layout and minimize the number of crossing edges. One of
the most common layouts is the layered graph. A layered
graph or hierarchical graph is a topological graph in which
the vertices can be partitioned into a set of layers and the
edges connect vertices from different layers. As the network
grows, additional vertices representing new entities can be
added to the original graph constantly. However, users are
familiar with the original graph and keeps a so-called men-
tal map in their minds, so disrupting the relative positions
of the original vertices should be avoided [Branke, 2001;
Görg et al., 2005]. The incremental layered graph drawing
problem (IGDP) aims to handle this situation.

Originally introduced by Sugiyama et al. [1981], the lay-
ered graph drawing problem was widely studied [Laguna et
al., 1997; Pupyrev et al., 2011], and softwares which integrate
Sugiyama’s heuristic such as UML workbench [Seemann,
1997], Graphviz [Ellson et al., 2004], and GLEE [Nachman-
son et al., 2008] have been developed. Apart from the static
version, Beck et al. [2014] presented comprehensive surveys
on a series of dynamic graph drawing problems. However,
most early works were based on case studies and there were
no objective benchmarks for testing their algorithms. Re-
cently, Sánchez-Oro et al. [2017] proposed a variable neigh-
borhood scatter search (VNSS) algorithm to solve the incre-
mental layered graph drawing problem and tested it on 240
instances in IGDPLIB [Laguna et al., 1997]. Napoletano et
al. [2019] imposed additional constraints to absolute posi-
tions of the original vertices, and proposed a GRASP heuris-
tic for solving it. Besides, Martı́ et al. [2018] focused on the
2-layer graphs, and presented a tabu search algorithm for the
dynamic bipartite drawing problem.

Given an incremental layered graph G = (V,E, L) where
V is the set of vertices, E is the set of edges and L is the
set of layers. Let Vl be the set of vertices in layer l, and
we define V 0

l and V +
l be the original vertices and the newly

added vertices in layer l, respectively. Similarly, we define
El be the set of edges between layers l and l+ 1, and we can
add a dummy E|L| = ∅ for consistency. It is obvious that
V = V1 ∪ V2 ∪ ... ∪ V|L| and E = E1 ∪ E2 ∪ ... ∪ E|L|.
Figure 1 illustrates an instance of the IGDP and one of its
feasible solutions. There are 6 layers in Figure 1, each of
which contains a column of vertices. The black nodes are
the original nodes whose relative positions must be preserved,

2

0

1

3

4

0

1

3

2

2

0

1

3

0

1

4

2

4

0

1

2

3

0

1

2

3

3

Figure 1: A solution to an incremental layered graph drawing in-
stance. The black nodes are the original nodes and white nodes are
the newly added ones.

and the white nodes are the newly added ones which can be
arbitrarily placed. For convenience, the partial order on the
original nodes is prescribed by the names of the nodes, i.e.,
node i precedes node j if i < j. In the sequel, all figures
follow this drawing convention.

In this study, we focus on a special case of the incremental
layered graph where edges only exist between adjacent lay-
ers. In other words, there is no edge between vertices in the
same layer or a pair of non-adjacent layers. Note that the
latter case can be handled by adding dummy nodes in each
intermediate layer to make the edge a polyline [Rüegg et al.,
2016]. Let pli be the position index of vertex i in layer l. Let
xlij = 1 if vertex i precedes vertex j in layer l, i.e., pli < plj ,
otherwise xlij = 0. Let clijuv = 1 if edge (i, u) and edge
(j, v) cross, i.e., (pli − plj)(pl+1

u − pl+1
v) < 0 or xlij 6= xl+1

uv ,
where vertices i, j lie in layer l and vertices u, v lie in layer
l + 1, otherwise clijuv = 0. The mixed integer programming
(MIP) model for the incremental graph drawing is as follows.

min
∑
l∈L

∑
(i,u),(j,v)∈El

i<j

clijuv, (1)

s.t. − clijuv ≤ xlij − xl+1
uv ≤ clijuv

∀l ∈ L,∀(i, u), (j, v) ∈ El, i < j, u < v, (2)

− clijuv ≤ xlij − (1− xl+1
vu) ≤ clijuv

∀l ∈ L,∀(i, u), (j, v) ∈ El, i < j, u > v, (3)

1− |Vl|(1− xlij) ≤ plj − pli ≤ |Vl|xlij − 1

∀l ∈ L,∀i, j ∈ Vl, i < j, (4)

xlij = 1,∀l ∈ L,∀i, j ∈ V 0
l , i < j, (5)

xlij , c
l
ijuv ∈ {0, 1}, pli ∈ [1, |Nl|]

∀l ∈ L,∀i, j ∈ Nl,∀(i, u), (j, v) ∈ El, i < j. (6)

The objective is to minimize the total number of crossing
edges. Constraints (2) and (3) require that clijuv ≥ xlij ⊕
xl+1
uv = (¬xlij ∧ xl+1

uv) ∨ (xlij ∧ ¬xl+1
uv) so that the crossing

state will be correctly counted into the objective. Constraints
(4) keep the consistency of the relative position among nodes,
that is, if node i precedes node j and node j precedes node k,
then node i must precede node k. Constraints (5) impose the
relative order of the original nodes.

5 Two CNS Algorithms for IGDP
In order to examine the effectiveness of the CNS framework,
we design two algorithms for solving IGDP based on the CNS
framework. The first is called CNS-BB and uses a branch-
and-bound (BB) algorithm to find the best set of independent
moves as maximum weight clique (MWC) without problem-
specific knowledge, and the second is called CNS-DP and
uses a dedicated dynamic programming algorithm to identify
the best set of independent moves for IGDP.

5.1 Neighborhood Structure
We design two kinds of neighborhoods for the IGDP, which
are insertion and exchange, respectively. For a pair of nodes i
and j in layer l, ηl(i, j) represents inserting node i right after
node j if node i precedes node j, or inserting node i right be-
fore node j if node j precedes node i. Similarly, exchanging
the positions of nodes i and j in layer l is denoted by χl(i, j).
It is obvious that the exchange operation can be achieved by a
pair of insertion operations, so we will only focus on the im-
plementation of the insertion neighborhood. In addition, only
one layer is considered at each step, and the layers are picked
in turns, i.e., the layer k mod |L| will be selected at step k.

For convenience, we define some notations for later uses.
Let ∆(ηl(i, j)) be the objective improvement of an insertion
move, and the objective value of each neighboring solution
can be incrementally calculated as f(X⊕ηl(i, j)) = f(X)+
∆(ηl(i, j)). Also, we denote the position index of node i in
layer l by pli, which is consistent with the MIP model.

5.2 Independent Moves for IGDP
As explained earlier, the problem of identifying the best set
of independent moves can be formulated as MWCP. Here we
show how to find the best composite move for IGDP.

Proposition 1. Let a and b be two integers and [a, b] denotes
the set of integers {x|min{a, b} ≤ x ≤ max{a, b}}. In
IGDP, a pair of moves ηl(i, j) and ηl(u, v) are independent
to each other if [pli, p

l
j] ∩ [plu, p

l
v] = ∅.

Proof. Without loss of generality, we discuss the case pli <
plj < plu < plv only. Note that it may introduce non-zero
terms (additional or reduced crosses) to the objective im-
provement ∆(ηl(i, j)) and ∆(ηl(u, v)) iff the relative posi-
tions of any pairs of nodes change. But ηl(i, j) (ηl(u, v))
only disrupts the order of nodes between [pli, p

l
j] ([plu, p

l
v]).

So, new non-zero terms will never be introduced to ηl(i, j) if
ηl(u, v) is simultaneously performed, and vice versa. Hence,
∆(ηl(i, j)⊕ ηl(u, v)) = ∆(ηl(i, j)) + ∆(ηl(u, v)).

Proposition 2. In IGDP, given a set of neighborhood moves
M , if any two moves inM are independent to each other, then
M is a set of independent moves.

Proof. Let m1 = ηl(i, j) ∈ M and M ′ = M \ m1, it is
obvious that if [pli, p

l
j] ∩ [plu, p

l
v] = ∅,∀ηl(u, v) ∈ M ′, then

[pli, p
l
j] ∩ (

⋃
ηl(u,v)∈M ′ [plu, p

l
v]) = ∅, which means f(X ⊕

m1⊕m2⊕· · ·⊕mk) = f(X⊕m2⊕· · ·⊕mk)+∆(m1). It
will lead to the equation given by Definition 1 by recursively
expanding the right-hand side following the same rule.

3

1

2

0

3

0

2

1

4 4

(a) η0(3, 0) and η0(2, 1).

3

1

2

0

3

0

2

1

4 4

(b) η0(3, 0) and χ0(2, 4).

Figure 2: Different combinations of independent moves. Note that
[p03, p

0
0] ∩ [p02, p

0
1] = ∅ and [p03, p

0
0] ∩ [p02, p

0
4] = ∅.

Figure 2 presents an intuitive illustration for the indepen-
dent moves identified by Proposition 1. From Figure 2 we
can observe that an insertion ηl(i, j) involves a segment of
nodes between nodes i and j. The moves never interfere
with each other if the intersection of the involved segments
is empty. For example, η0(3, 0) is independent with both
η0(2, 1) and χ0(2, 4) in Figure 2. So, {η0(3, 0), η0(2, 1)}
and {η0(3, 0), χ0(2, 4)} are two composite moves as shown
in Figures 2a and 2b. Furthermore, it is easy to extend Propo-
sition 1 to multi-move cases as shown in Proposition 2, which
means that Hypothesis 1 is true for IGDP.

5.3 Algorithms CNS-BB and CNS-DP for IGDP
CNS-BB is an implementation of Algorithm 1 by implic-
itly building a graph with moves computed in line 5 (Eval-
uateNeighborhoodMoves) as vertices, and every edge con-
nects two independent moves. Then, the branch-and-bound
MWCP algorithm of Jiang et al. [2018] is used to computed
an MWC, which is the best set of independent moves, in line
6 (AssembleIndependentMoves).

For IGDP, we can also use problem-specific knowledge
to identify the best set of independent moves more effi-
ciently. Let ∆l(pli, p

l
j) be the objective improvement of the

best neighborhood move between nodes in positions pli and
plj , which is calculated by Eq. (7). Note that the two param-
eters in ∆l(pli, p

l
j) are node positions instead of node names,

which is different from the previous notations.

∆l(pli, p
l
j) = max{0,∆(ηl(i, j)),∆(ηl(j, i)),∆(χl(i, j))} (7)

Let dl(k) be the objective improvement of the best neigh-
borhood move combination between positions 0 and k in
layer l. Then, the recursive formulation for finding the best
composite move can be presented as Eq. (8).

dl(k) =

{
0 if k < 1

max
0≤k′≤k

{dl(k′ − 1) + ∆l(k′, k)} if k ≥ 1 (8)

As illustrated in Figure 3, the idea behind Eq. (8) is to
decompose dl(k) into an optimal substructure dl(k′− 1) (be-
fore k′ part) and a single move between two nodes in posi-
tions k′ and k (after k′ part), and evaluate all splitting points
k′. Then, we choose the best splitting point k′ to deter-
mine dl(k), which can be done in O(k) time, provided that
dl(k′−1)+∆l(k′, k) has been calculated for all 0 ≤ k′ ≤ k.

3

1

2

0

3

0

2

1

4 4

△0
(0,4)

3

1

2

0

3

0

2

1

4 4

d
0
(0)

△0
(1,4)

△0
(2,4)

3

1

2

0

3

0

2

1

4 4

d
0
(1)

3

1

2

0

3

0

2

1

4 4

d
0
(2)

△0
(3,4)

3

1

2

0

3

0

2

1

4 4

d
0
(3)

△0
(4,4)

Figure 3: Illustration for the dynamic programming. The optimal
d0(4) will always be the best one among these patterns.

Based on this, we implement an O(|Vl|2) time dynamic pro-
gramming procedure to calculate the values from dl(0) to
dl(|Vl| − 1) iteratively, and retrieve the optimal combina-
tion of independent moves and its corresponding objective
improvement from these values.

CNS-DP is an implementation of Algorithm 1 using the
dynamic programming described above to identify the best
set of independent moves in line 6.

5.4 Other Components and Strategies
Here we present the remaining components of the CNS al-
gorithms, including the initial solution generation and the
perturbation operator. We adopt a simple random initializa-
tion for IGDP which arranges the original nodes according
to their precedence, and inserts new nodes into random po-
sitions. The perturbation operator randomly picks 10% new
nodes and inserting them into random positions.

6 Computational Results and Analysis
In order to assess the effectiveness of the CNS framework
and its two implementations, we conduct extensive experi-
ments on the 240 IGDP instances presented in Laguna et al.
[1997] and compare our outcomes with the best results re-
ported by Sánchez-Oro et al. [2017]. The testbed is evenly
divided into four categories with 2, 6, 13, and 20 layers, re-
spectively. Each category can be further partitioned into three
groups whose graph densities are 0.065, 0.175 and 0.300, re-
spectively. Moreover, there are two sub-groups in each group
which consists of 10 instances with 0.2|V | new nodes and 10
ones with 0.6|V | new nodes. The number of vertices in each
layer is randomly distributed between 5 and 30. The experi-
ments are run on a server with Intel Xeon E5-2609 v2 2.5GHz
CPU and 32GB RAM, and the run time limit is 10 seconds.

Table 1 illustrates the detailed computational results of the
proposed algorithm. The first four columns gives the index,
layer number, edge density, and new node ratio of each group
of instances, respectively. Column VNSS presents the re-
sults produced by the variable neighborhood scatter search
(VNSS) [Sánchez-Oro et al., 2017]. Columns DP10s and
BB10s gives the best results obtained by the CNS-DP and
CNS-BB algorithms within a time limit of 10 seconds, re-
spectively. We set a 10-second time limit for these algo-
rithms to test their performance under real-life conditions.
Columns MIP1h, DP1h, and BB1h report the best objec-
tive values found by solving the proposed MIP model with
Gurobi 8.1, CNS-DP, and CNS-BB under one-hour time limit

0

1

3

2

2

1

3

1

0

3

2

0

(a) Current solution
(13 crosses).

0

1

3

2

2

1

3

1

0

3

20

(b) Best single
move (10 crosses).

0

1

3

2 2

1

3 1

0

3

2

0

(c) Best composite
move (9 crosses).

Figure 4: Different local optima of single and composite moves.

for theoretical analysis. The statistics for each algorithm on
each instance are the best results in 10 independent runs, re-
spectively. From Table 1 we can observe that the proposed
CNS algorithms dominate VNSS on every instance. It is also
highly competitive comparing to the MIP solver, and our ad-
vantage gets bigger as the number of new nodes and the edge
density increases. Specifically, CNS-DP got the best results
on all 240 instances under the one-hour time limit. In con-
trast, MIP1h fails to match CNS-DP1h on 36 instances, and
the average objective gap is over 1%. Apart from the im-
proved objective values, the computational time for conver-
gence is significantly reduced on large-scale instances. CNS-
DP is 10 times faster than MIP under the extended time limit,
and is 6 times faster than VNSS under the normal time limit.
Another interesting fact is that, without using the problem-
specific knowledge for finding the best combination of inde-
pendent moves, CNS-BB still outperforms VNSS within ten
seconds and obtains better results on 5 instance groups com-
paring to MIP1h. In addition, when the time limit is extended,
CNS-BB obtains more best known results and better average
objective value comparing to MIP and CNS-DP10s, which
shows the potential of the CNS framework.

The above computational results show great advantage of
the CNS framework. Next, we investigate the importance of
the composite neighborhood search in our algorithm. The
composite neighborhood search framework evaluates neigh-
borhood moves in a thorough and exact way, which is differ-
ent from the classic best-improvement and first-improvement
strategies. Intuitively, this feature could result in quick con-
vergence as the objective improvement per evaluation in-
creases. More importantly, it also improves the intensification
of the search and may lead to better local optima under certain
circumstances. Figure 4 illustrates different search trajecto-
ries of two neighborhood move selection strategies. Given an
initial solution in Figure 4a, the best single move is η1(2, 0) as
shown in Figure 4b. Then it is trapped in the local optimum
solution and the search stops. However, the best composite
neighborhood move is {η1(3, 0), η1(2, 1)} and it leads to a
better local optimum solution as shown in Figure 4c, and it
happens to be the global optimum in this tiny instance.

Apart from the intuitive investigation, we conduct experi-
ments to compare the evolution of objective values with the
computational time of different strategies on four typical in-
stances, as illustrated in Figure 5. In these figures, CNS-DP
and CNS-BB respectively represent our proposed dynamic-
programming-based and branch-and-bound-based CNS. ILS-

Table 1: Experimental results on 240 IGDPLIB instances.

ID |L| Density |V +|
|V |

Average best objective value Average best objective gap (%) Average CPU (s) for best result
VNSS MIP1h DP1h DP10s BB1h BB10s MIP1h DP1h DP10s BB1h BB10s VNSS MIP1h DP1h DP10s BB1h BB10s

1 2 0.065 0.2 31.4 9.2 9.2 9.2 9.2 9.2 0.00 0.00 0.00 0.00 0.00 0.03 0.14 0.04 0.04 0.03 0.03
2 2 0.065 0.6 29.9 9.9 9.9 9.9 9.9 9.9 0.00 0.00 0.00 0.00 0.00 0.15 0.24 0.08 0.08 0.10 0.10
3 2 0.175 0.2 581.7 520.7 520.7 520.7 520.7 520.7 0.00 0.00 0.00 0.00 0.00 0.04 0.21 0.02 0.02 0.02 0.02
4 2 0.175 0.6 974.0 962.3 962.3 962.3 962.3 962.5 0.00 0.00 0.00 0.00 0.02 0.36 1.08 0.78 0.78 9.63 0.44
5 2 0.300 0.2 2528.9 2440.7 2440.7 2440.7 2440.7 2440.7 0.00 0.00 0.00 0.00 0.00 0.10 0.41 0.02 0.02 0.02 0.02
6 2 0.300 0.6 4369.2 4357.3 4357.3 4357.3 4357.3 4357.3 0.00 0.00 0.00 0.00 0.00 0.63 10.37 0.12 0.12 1.12 1.12
7 6 0.065 0.2 228.4 220.2 220.2 220.2 220.5 220.5 0.00 0.00 0.00 0.43 0.43 0.41 0.44 0.09 0.09 2.47 2.47
8 6 0.065 0.6 469.4 423.5 423.5 431.9 426.7 441.9 0.00 0.00 1.94 1.34 5.09 2.78 7.37 147.05 3.84 359.26 5.51
9 6 0.175 0.2 3113.8 3095.6 3095.6 3095.6 3095.6 3095.6 0.00 0.00 0.00 0.00 0.00 0.66 1.27 0.08 0.08 1.10 1.10

10 6 0.175 0.6 5581.3 5478.0 5478.0 5478.0 5478.1 5482.3 0.00 0.00 0.00 0.00 0.09 5.15 81.94 96.17 2.55 120.15 5.85
11 6 0.300 0.2 11788.7 11633.5 11633.5 11633.5 11633.9 11633.9 0.00 0.00 0.00 0.00 0.00 1.06 2.50 0.05 0.05 0.13 0.13
12 6 0.300 0.6 20867.5 21631.5 20707.2 20707.2 20707.5 20716.6 2.35 0.00 0.00 0.00 0.04 6.88 2180.79 0.99 0.99 16.25 3.91
13 13 0.065 0.2 822.2 793.7 793.7 794.5 794.6 797.4 0.00 0.00 0.10 0.12 0.52 2.05 1.66 141.48 2.35 29.14 4.56
14 13 0.065 0.6 1572.0 1407.1 1407.1 1445.8 1435.8 1485.8 0.00 0.00 2.69 1.96 5.53 16.51 34.28 110.54 2.87 1495.88 4.73
15 13 0.175 0.2 7456.4 7403.1 7403.1 7403.1 7403.1 7406.0 0.00 0.00 0.00 0.00 0.08 3.04 3.64 1.49 1.49 20.53 3.64
16 13 0.175 0.6 13326.9 13404.5 13040.6 13044.5 13061.7 13099.2 1.49 0.00 0.06 0.28 0.68 23.45 1939.75 12.44 4.70 384.59 6.20
17 13 0.300 0.2 26952.2 26888.9 26888.9 26888.9 26888.9 26888.9 0.00 0.00 0.00 0.00 0.00 3.87 6.04 0.12 0.12 1.25 1.25
18 13 0.300 0.6 47795.8 53938.6 47442.4 47442.4 47447.2 47485 11.10 0.00 0.00 0.01 0.12 36.03 3603.91 4.35 4.35 839.09 5.67
19 20 0.065 0.2 1496.1 1465.7 1465.7 1467.5 1465.7 1471.9 0.00 0.00 0.13 0.00 0.42 5.80 3.86 147.38 2.89 334.44 5.92
20 20 0.065 0.6 2845.3 2611.5 2611.5 2687.0 2668.6 2747.2 0.00 0.00 2.97 2.24 5.29 50.05 69.98 366.37 4.41 1137.65 6.99
21 20 0.175 0.2 12272.4 12193.4 12193.4 12193.7 12193.4 12195.6 0.00 0.00 0.00 0.00 0.02 7.78 7.08 27.87 3.20 26.17 4.29
22 20 0.175 0.6 21936.0 22276.6 21465.5 21489.4 21471.1 21610.4 2.06 0.00 0.16 0.04 0.78 73.81 2624.97 208.41 6.08 1656.24 5.47
23 20 0.300 0.2 44720.6 44616.4 44616.4 44616.7 44618.2 44624.5 0.00 0.00 0.00 0.01 0.02 11.21 14.43 39.94 3.02 268.60 3.87
24 20 0.300 0.6 78946.7 91001.2 78266.1 78266.1 78276.1 78346.3 15.91 0.00 0.00 0.02 0.09 83.27 3606.11 3.76 3.76 600.92 6.98
Average 12946.1 13699.3 12810.5 12816.9 12816.1 12835.4 1.37 0.00 0.34 0.27 0.80 14.00 591.77 54.57 2.00 304.37 3.34
#Best 0/240 204/240 240/240 198/240 211/240 148/240

15

20

25

30

35

40

45

50

-4 -3 -2 -1 0 1

O
b
je

ct
iv

e
v
al

u
e

(y
×

1
0

2
)

Computational time (10x s)

CNS-DP

CNS-BB

ILS-BI

ILS-FI

(a) Results on medium instance
incgraph 13 0.06 5 30 1.60 2.

45

50

55

60

65

-4 -3 -2 -1 0 1

O
b
je

ct
iv

e
v
al

u
e

(y
×

1
0

2
)

Computational time (10x s)

CNS-DP

CNS-BB

ILS-BI

ILS-FI

(b) Results on medium instance
incgraph 13 0.17 5 30 1.60 9.

155

157

159

161

163

165

167

169

-4 -3 -2 -1 0 1

O
b
je

ct
iv

e
v
al

u
e

(y
×

1
0

3
)

Computational time (10x s)

CNS-DP

CNS-BB

ILS-BI

ILS-FI

(c) Results on large instance inc-
graph 20 0.30 5 30 1.60 1.

47

48

49

50

51

52

53

54

-4 -3 -2 -1 0 1

O
b
je

ct
iv

e
v
al

u
e

(y
×

1
0

3
)

Computational time (10x s)

CNS-DP

CNS-BB

ILS-BI

ILS-FI

(d) Results on large instance in-
cgraph 20 0.30 5 30 1.60 9.

Figure 5: Evolution of objective values with the computational time
of different strategies on four typical instances.

BI and ILS-FI denote the classic iterated local search which
only performs one single move at each step using the best im-
provement and the first improvement strategies, respectively.

From Figure 5 we can observe that the results of CNS-DP
and ILS-BI are close to each other during the first 0.1 sec-
onds, then CNS-DP quickly converges to much better solu-
tions. When the time limit is reached, CNS-DP keeps domi-
nating other strategies and both implementations of the CNS
framework found better solutions comparing to ILS. In partic-
ular, the gap between CNS and ILS is significant on the large-

scale instances as shown in Figures 5c and 5d. These results
indicate that the composite neighborhood structure improves
the intensification of the search and make it more powerful.

Regarding the computational efficiency, the x-coordinate
of the left-most point of each curve is the time consumed
by the first step of local search procedure, which reflects the
overhead for the neighborhood evaluation to some extent. As
we can see in Figure 5, the branch-and-bound algorithm for
the general maximum clique problem is almost 100 times
slower than the dedicated dynamic programming algorithm
on these instances. Nevertheless, it reaches better local op-
tima than the two ILS algorithms within 10 seconds on these
instances. Moreover, the CNS-BB algorithm can continue
to improve the solution quality if the time limit is extended,
since there is still improvement when it is close to the time-
out as shown in Figures 5b and 5d. This demonstrates the
potential of the CNS framework to solve other discrete opti-
mization problems even if an efficient algorithm for finding
the best combination of independent moves do not exist.

7 Conclusion
We proposed a composite neighborhood search framework
which is an iterated local search algorithm integrating a com-
posite neighborhood structure. As a case study, we de-
signed a dynamic-programming-based composite neighbor-
hood search algorithm for solving the incremental graph
drawing problem (IGDP) to investigate the performance of
the proposed CNS framework. The computational results
demonstrate the advantage of the CNS framework for solv-
ing this NP-hard problem. Based on these facts, it seems
worthy to investigate the efficiency and effectiveness of the
CNS framework on other combinatorial optimization prob-
lems in the future. In addition, it will be interesting to com-
bine the CNS framework with other successful strategies such
as population-based metaheuristics and guided local search.

References
[Balas and Yu, 1989] Egon Balas and Chang Sung Yu. On graphs

with polynomially solvable maximum-weight clique problem.
Networks, 19(2):247–253, 1989.

[Beck et al., 2014] Fabian Beck, Michael Burch, Stephan Diehl,
and Daniel Weiskopf. The state of the art in visualizing dynamic
graphs. In R. Borgo, R. Maciejewski, and I. Viola, editors, Euro-
Vis - STARs. The Eurographics Association, 2014.

[Beck et al., 2017] Fabian Beck, Michael Burch, Stephan Diehl,
and Daniel Weiskopf. A taxonomy and survey of dynamic graph
visualization. Computer Graphics Forum, 36(1):133–159, 2017.

[Brandstädt and Mosca, 2018] Andreas Brandstädt and Raffaele
Mosca. Maximum weight independent sets for (p7,triangle)-
free graphs in polynomial time. Discrete Applied Mathematics,
236:57–65, 2018.

[Branke, 2001] Jürgen Branke. Dynamic graph drawing. In
Michael Kaufmann and Dorothea Wagner, editors, Drawing
Graphs: Methods and Models, pages 228–246. Springer, Berlin,
Heidelberg, 2001.

[Burch et al., 2012] Michael Burch, Christoph Müller, Guido
Reina, Hansjoerg Schmauder, Miriam Greis, and Daniel
Weiskopf. Visualizing dynamic call graphs. In Michael Goesele,
Thorsten Grosch, Holger Theisel, Klaus Toennies, and Bernhard
Preim, editors, Vision, Modeling and Visualization. The Euro-
graphics Association, 2012.

[Ellson et al., 2004] John Ellson, Emden R. Gansner, Eleftherios
Koutsofios, Stephen C. North, and Gordon Woodhull. Graphviz
and dynagraph — static and dynamic graph drawing tools. In
Michael Jünger and Petra Mutzel, editors, Graph Drawing Soft-
ware, pages 127–148. Springer, Berlin, Heidelberg, 2004.

[Eppler and Platts, 2009] Martin J. Eppler and Ken W. Platts. Vi-
sual strategizing: The systematic use of visualization in the
strategic-planning process. Long Range Planning, 42(1):42–74,
2009.

[Fang et al., 2016] Zhiwen Fang, Chu-Min Li, and Ke Xu. An
exact algorithm based on maxsat reasoning for the maximum
weight clique problem. Journal of Artificial Intelligence Re-
search, 55:799–833, 2016.

[Görg et al., 2005] Carsten Görg, Peter Birke, Mathias Pohl, and
Stephan Diehl. Dynamic graph drawing of sequences of orthog-
onal and hierarchical graphs. In János Pach, editor, Graph Draw-
ing, pages 228–238, Berlin, Heidelberg, 2005. Springer.

[Hu et al., 2016] Changjun Hu, Yang Li, Xin Cheng, and Zhenyu
Liu. A virtual dataspaces model for large-scale materials scien-
tific data access. Future Generation Computer Systems, 54:456–
468, 2016.

[Jiang et al., 2017] Hua Jiang, Chu-Min Li, and Felip Manya. An
exact algorithm for the maximum weight clique problem in large
graphs. In Thirty-First AAAI Conference on Artificial Intelli-
gence, pages 830–838, 2017.

[Jiang et al., 2018] Hua Jiang, Chu-Min Li, Yanli Liu, and Felip
Manya. A two-stage maxsat reasoning approach for the maxi-
mum weight clique problem. In Thirty-Second AAAI Conference
on Artificial Intelligence, pages 1338–1346, 2018.

[Kriegel et al., 2008] Hans-Peter Kriegel, Peer Kröger, Matthias
Renz, and Tim Schmidt. Hierarchical graph embedding for ef-
ficient query processing in very large traffic networks. In Inter-
national Conference on Scientific and Statistical Database Man-
agement, pages 150–167. Springer, 2008.

[Laguna et al., 1997] Manuel Laguna, Rafael Martı́, and Vicente
Valls. Arc crossing minimization in hierarchical digraphs with
tabu search. Computers & Operations Research, 24(12):1175–
1186, 1997.

[Martı́ et al., 2018] Rafael Martı́, Anna Martı́nez-Gavara, Jesús
Sánchez-Oro, and Abraham Duarte. Tabu search for the dynamic
bipartite drawing problem. Computers & Operations Research,
91:1–12, 2018.

[Mateescu et al., 2008] Robert Mateescu, Rina Dechter, and
Radu Marinescu. AND/OR multi-valued decision diagrams
(AOMDDs) for graphical models. Journal of Artificial Intelli-
gence Research, 33:465–519, 2008.

[Nachmanson et al., 2008] Lev Nachmanson, George Robertson,
and Bongshin Lee. Drawing graphs with GLEE. In Seok-Hee
Hong, Takao Nishizeki, and Wu Quan, editors, Graph Drawing,
pages 389–394, Berlin, Heidelberg, 2008. Springer.

[Napoletano et al., 2019] Antonio Napoletano, Anna Martı́nez-
Gavara, Paola Festa, Tommaso Pastore, and Rafael Martı́. Heuris-
tics for the constrained incremental graph drawing problem. Eu-
ropean Journal of Operational Research, 274(2):710–729, 2019.

[Pisinger and Ropke, 2010] David Pisinger and Stefan Ropke.
Large neighborhood search. In Michel Gendreau and Jean-Yves
Potvin, editors, Handbook of Metaheuristics, pages 399–419.
Springer, Boston, MA, 2010.

[Pupyrev et al., 2011] Sergey Pupyrev, Lev Nachmanson, and
Michael Kaufmann. Improving layered graph layouts with
edge bundling. In Ulrik Brandes and Sabine Cornelsen, edi-
tors, Graph Drawing, pages 329–340, Berlin, Heidelberg, 2011.
Springer.

[Rüegg et al., 2016] Ulf Rüegg, Thorsten Ehlers, Miro Spönemann,
and Reinhard von Hanxleden. A generalization of the directed
graph layering problem. In Yifan Hu and Martin Nöllenburg,
editors, Graph Drawing and Network Visualization, pages 196–
208, Cham, 2016. Springer.

[Sánchez-Oro et al., 2017] Jesús Sánchez-Oro, Anna Martı́nez-
Gavara, Manuel Laguna, Rafael Martı́, and Abraham Duarte.
Variable neighborhood scatter search for the incremental graph
drawing problem. Computational Optimization and Applications,
68(3):775–797, Dec 2017.

[Seemann, 1997] Jochen Seemann. Extending the Sugiyama algo-
rithm for drawing UML class diagrams: Towards automatic lay-
out of object-oriented software diagrams. In Giuseppe DiBat-
tista, editor, Graph Drawing, pages 415–424, Berlin, Heidelberg,
1997. Springer.

[Sugiyama et al., 1981] Kozo Sugiyama, Shojiro Tagawa, and Mit-
suhiko Toda. Methods for visual understanding of hierarchical
system structures. IEEE Transactions on Systems, Man, and Cy-
bernetics, 11(2):109–125, Feb 1981.

[Wang et al., 2016] Yiyuan Wang, Shaowei Cai, and Minghao Yin.
Two efficient local search algorithms for maximum weight clique
problem. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 805–811. AAAI Press,
2016.

[Wu et al., 2012] Qinghua Wu, Jin-Kao Hao, and Fred Glover.
Multi-neighborhood tabu search for the maximum weight clique
problem. Annals of Operations Research, 196(1):611–634, Jul
2012.

[Yagiura et al., 2004] Mutsunori Yagiura, Toshihide Ibaraki, and
Fred Glover. An ejection chain approach for the general-
ized assignment problem. INFORMS Journal on Computing,
16(2):133–151, 2004.

	Introduction
	Motivations and Contributions
	Composite Neighborhood Search
	Incremental Graph Drawing Problem
	Two CNS Algorithms for IGDP
	Neighborhood Structure
	Independent Moves for IGDP
	Algorithms CNS-BB and CNS-DP for IGDP
	Other Components and Strategies

	Computational Results and Analysis
	Conclusion

